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INTRODUCTION: Mutation lays the foundation
for genetics, evolution, and our very existence
and demise. Historically, genetics has focused
on inherited variants and has only recently be-
gun to examine the genetic changes that occur
after fertilization, known as postzygotic muta-
tions (PZMs). This bias is partially because of
technological limitations and the simplifying
assumption that all cells in a multicellular or-
ganism share the same genome.

RATIONALE:Most PZMresearch has been single-
tissue studies. An exciting next generation of
PZM studies now examine PZMs across multi-
ple tissues within an individual. However, the
relatively small number of individuals and tis-

sue types examined thus far have limited the
ability to ascribe sources of mutation variation
among individuals or to provide detailed de-
scriptions of embryonic mutations that occur
after the first few cell divisions.

RESULTS: To expand the field’s knowledge of
the origins and functional consequences of
PZMs, we sought to answer four key questions:
(i) Are PZMs detectable? (ii) Where do PZMs
occur? (iii) When do PZMs occur? (iv) When
do PZMs contribute to phenotypic variation?
We developed a suite of methods called

Lachesis to detect single-nucleotide DNAPZMs
frombulkRNA sequencing (RNA-seq) data.We
applied these methods to the final major re-

lease of the NIH Genotype-Tissue Expression
(GTEx) project—a catalog of 17,382 samples
derived from 948 donors across 54 diverse
tissues and cell types—to generate one of the
largest and most diverse catalogs of PZMs in
normal individuals.
PZMs were pervasive and highly variable

among donors and tissues. Nearly half of the
variation in mutation burden among tissue
samples was explained by technical and bio-
logical effects, such as age and tissue type. We
also found that 9% of this variation was at-
tributed to donor-specific effects. This means
that there may be systematic differences among
individuals in the number of mutations that
they carry due to genetic and/or environmental
effects, even after controlling for age. The types
of mutations, i.e., mutation spectra, were also
variable across tissues, which suggests that mu-
tational mechanisms may be different across
tissues.
To estimate when PZMs occur during devel-

opment, we first identified putative prenatal
PZMs in the catalog and then mapped them
to a developmental tree. Mutation burden and
spectra varied throughout prenatal develop-
ment, with early embryogenesis being themost
mutagenic.
Finally, to investigate the functional conse-

quences of PZMs, we compared the predicted
deleteriousness and selection strength on
PZMs across space and time. We found that the
predicted functional impact of PZMs varies
during prenatal development and across tis-
sues, and we identified a class of low-frequency
prenatal mutations apparently more deleteri-
ous than all other forms of human genetic
variation considered. The deleteriousness of
germline mutations decreased through the
lifecycle: testicular germ cells carried more
deleterious mutations than ejaculated sperm
and sperm resulting in viable offspring.

CONCLUSION: In this work, we present meth-
ods for detecting PZMs and a comprehensive
and diverse atlas of PZMs in normal develop-
ment and aging. Akin to how expansive surveys
of normal germline variation are immensely
beneficial for human and medical genetics,
this catalog contributes to our understanding of
normal postzygotic variation so that abnormal
variation can be identified and interpreted.
Uncovering the effects of these PZMs on hu-
man health and disease is an exciting and val-
uable endeavor.▪
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Postzygotic DNA mutations accumulate in the human body, are copied into RNA, and are detected by RNA-seq. A
developmental map of these mutations resolves when and where in the body they occur and finds that the selection
pressure on PZMs is different from inherited germline variants. BAMs, binary alignment maps; VCF, variant call format.
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Postzygotic mutations (PZMs) begin to accrue in the human genome immediately after fertilization, but
how and when PZMs affect development and lifetime health remain unclear. To study the origins and
functional consequences of PZMs, we generated a multitissue atlas of PZMs spanning 54 tissue and cell
types from 948 donors. Nearly half the variation in mutation burden among tissue samples can be
explained by measured technical and biological effects, and 9% can be attributed to donor-specific
effects. Through phylogenetic reconstruction of PZMs, we found that their type and predicted functional
impact vary during prenatal development, across tissues, and through the germ cell life cycle. Thus,
methods for interpreting effects across the body and the life span are needed to fully understand
the consequences of genetic variants.

T
he effects of age ravage all tissues of the
body, but the pace and consequences of
age-related decay vary among tissues and
people. The accumulation of DNA dam-
age is thought to be a primary agent of

age-related disease (1), and surveys of post-
zygotic mutations (PZMs) in normal tissues
[for example, blood (2–4), brain (5), and skin
(6, 7)] and across the body (8–10) have found
PZMs to be pervasive across the genome and
individuals. However, beyond cancer, there
are few conditions where PZMs are known
to have a causal role. Because of the high cost
and technological challenges of PZM studies, a
general understanding of how and when mu-
tation affects the function of specific cell and
tissue types is essential for defining research
priorities. One way to prioritize hypotheses
about mutation and disease is to systemat-
ically characterize the consequences of PZMs
on cellular fitness across a broad range of tis-
sues. Surveys of normal tissues have found

that PZMs appear to accrue neutrally (10, 11),
but positive and negative selection do occur
in specific genes and cellular contexts, which
suggests that PZMs affect cellular function.
Another fundamental question is how the

timing of mutation modulates risk for dis-
eases. As clearly demonstrated in oncology, it
is possible to detect disease-causing PZMs and
augment clinical care years before clinical dis-
ease is recognized (12, 13). If PZMs that confer
risk for disease accrue across the life span, the
PZM profile in a healthy individual could con-
tain actionable prognostic information. Al-
though the relative contributions of prenatal
and postnatal PZMs to disease risk are un-
clear, because of the massive cell proliferation
during development, prenatal PZMs have the
potential to affect many cells and, thus, to play
an important role in disease.
Most PZM research has been single-tissue

studies largely focused on tissues that are
easily accessible, such as blood, liver, skin, and
colon. An exciting next generation of PZM
studies now examines PZMs across multiple
tissues within an individual (8–10, 14). How-
ever, the relatively small numbers of indi-
viduals and tissue types used in such studies
have limited the ability to ascribe sources of
mutation variation among individuals or to
provide detailed descriptions of embryonic
mutations that occur after the first few cell
divisions. To expand our knowledge of PZMs in
normal tissues, we developed a suite of meth-
ods called Lachesis to identify single-nucleotide
PZMs from bulk RNA sequencing (RNA-seq)
data and predict when the mutations occurred
during development and aging (figs. S1 and
S2). We ran the algorithm on the final major
release of the Genotype Tissue Expression
project (GTEx)—a collection of RNA-seq data

from 17,382 samples derived from 948 donors
across 54 diverse tissues and cell types—to
generate one of the most comprehensive data-
bases of PZMs in normal tissues (15, 16) (tables
S1 to S8). We used this atlas and the rich meta-
data on GTEx donors to characterize sources
of variation in PZMburden among individuals
and unveil the spatial, temporal, and func-
tional variation of PZMs in normal develop-
ment and aging.

DNA PZMs are accurately detected in bulk
tissue RNA-seq

We evaluated the accuracy of the algorithm
using several in silico and experimental meth-
ods (figs. S3 and S4 and tables S3 to S6). For
experimental validation, we obtained four in-
dependent DNA- and RNA-based validation
datasets generated from the same tissue sam-
ples as the primary data covering 296 specific
genomic sites across 95 samples. The original
PZM variant allele frequency (VAF) estimates
from RNA-seq were well correlated with the
VAFs from DNA-seq (Spearman’s r = 0.82,
P value = 2.3 × 10−25), which suggests that RNA-
seq–based VAFs are representative of true mu-
tant cell frequencies. PZMswith VAFs as low as
0.16% and PZMs found in multiple tissues and
multiple donors were validated. The average
false discovery rate (FDR) across all valida-
tion datasets was 27% and was lower than
with published methods for detecting PZMs
from RNA-seq (34 to 82%) (8, 9, 17) (fig. S1E
and table S3). Because mutations may fail to
validate as a result of spatial variation in
mosaicism, the FDRs may be overestimated. A
small subset of samples (~5%) had an extra-
ordinarily high number of detected PZMs;
validation data from these samples produced
an average FDR estimate of 98% (table S3).We
conclude that these outliers were likely tech-
nical artifacts and not hypermutated tissues.
We used power simulations to estimate the

algorithm’s sensitivity. As expected, simulated
PZMs with larger VAFs and higher coverage
had higher PZM detection power. At the mid-
dle quintile of coverage [(673, 1395) fold cov-
erage), PZMs with VAFs as low as 0.66% could
be detected in at least 90% of simulations,
which suggests that the method has reason-
able sensitivity (fig. S1F).

PZMs are pervasive and highly variable among
donors and tissues

After sample and PZM quality control, 56,585
PZMs were detected with VAFs as low as
0.04% and a median VAF of 0.5% (table S7).
These mutations are not a random sample of
PZMs from the genome but a critically impor-
tant subset located in the so-called allowable
transcriptome—a filtered set of transcribed
positions based on GENCODE 26 genemodels
(16) (table S1). In total, 100% of the donors
and 77% of the tissue samples had detectable
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Fig. 1. PZM burden is correlated with biological and technical variables.
(A) Each data point represents a single tissue sample and is colored by tissue.
Median normalized PZM burden in a tissue denoted by the horizontal black line.
Tissues are sorted by increasing median normalized PZM burden. A pseudocount of
one mutation was added to each sample before normalization and log transformation
for visualization. (B) We fit a regression model for single-tissue PZM burden
using 12 covariates and 48 tissues. Shown here are the type II ANOVA F statistics for
each covariate in the model. Larger F statistics correspond to greater explanatory
power of the covariate. (C and D) Regression coefficients of tissue-ancestry interactions
(C) and tissue-sex interactions (D) indicate strong effects of ancestry and sex
on PZM burden. AA, African American; AS, Asian American; EA, European American.

The asterisks in (C) denote differences in mutation burden among ancestry
groups that are consistent with cancer incidence trends (18). (E) Significant positive
tissue-age interaction effects were detected for 16/48 (33%) tissues. In (C) to
(E), the red gradient and text labels within indicate the meaning of the regression
coefficients’ sign and magnitude. (F) Variance component estimates of donor-
specific random effects on PZM burden indicate that 8 to 15% of variation
among tissues can be ascribed to donor effects, which could be genetic and
environmental. Dashed vertical lines at beta = 0 in interaction plots denote no
association between mutation burden and interaction. [(C), (D), (E), and (F)]
Error bars represent 95% CIs. [(A), (C), (D), and (E)] Tissues are colored using
the GTEx coloring convention (see table S8 for a complete legend).

RESEARCH | RESEARCH ARTICLE

EMBARGOED UNTIL 2PM U.S. EASTERN TIME ON THE THURSDAY BEFORE THIS DATE:



mosaicism (table S2). We defined the muta-
tion burden of a sample as the number of
PZMs detected in a sample and the normal-
ized mutation burden of a sample as the mu-
tation burden normalized by the size of the
sample’s transcriptome (the number of mega-
bases with at least 20× total coverage). The
median normalized mutation burden in a tis-
sue ranged from0.03PZMsper expressedmega-
base in the cerebellar hemisphere to 0.47 PZMs
per expressed megabase in the liver (Fig. 1A
and table S8). The observed normalized mu-
tation burden was more variable within a tissue
than between tissues [mean median absolute
deviation (MAD) within a tissue = 0.07 PZMs
per expressedmegabase;MAD across tissues =
0.02 PZMs per expressed megabase]. This ob-
servation suggests that processes generating
detectable PZMs may be more variable across
donors than across tissue types.
To build further support for the validity of

our per-tissue estimates of mutation burden,
we compared our data with a recent multitis-
sue survey of PZMs based onDNA-seq of three
donors (10, 14). Encouragingly, when compar-
ing 12 tissues assessed by both studies, we
found reasonably high correlation in estimated
PZM burden (16) (fig. S5). The Pearson correla-
tion for the average burden was 0.8 (P = 0.0018,
Pearson’s correlation test).

PZM burden is correlated with biological
and technical variables

To partition and quantify potential sources of
single-tissue PZM burden, we fit linear mod-
els relating technical and biological metadata
to single-tissue PZM burdens and selected
the best fitting model identified from detailed
model comparisons (16). The final model con-
tained 12 covariates and explained 48% of the
variation in mutation burden. All covariates
yielded F test P < 0.05 in a type II analysis of
variance (ANOVA) and included both biolog-
ical (age; tissue; and interactions of tissue with
age, sex, and self-reported ancestry) and tech-
nical (for example, mutation detection power
and RNA extraction batch) sources of varia-
tion (Fig. 1B and table S9). In total, 20.8%
(10/48) of tissues showed significant (Wald
test Q value < 0.05) associations with self-
reported ancestry, including, as expected, a
much lower burden of mutation in sun-exposed
skin in African Americans and Asian Amer-
icans compared with European Americans (8).
The incidence rates of cancer types affect-
ing these tissues have ancestry associations
that are consistent with (in the same direc-
tion as) the mutation burden associations
in 83% (15/18) of comparisons (18), which sug-
gests that variation in PZM burden in normal
tissues may contribute to differences in can-
cer risk among ancestries (Fig. 1C and table
S10). Unexpectedly, males had lower burden
in all three skin-related sample types compared

with females (Fig. 1D). This resultwas essentially
unchanged when removing genes inferred to
have sex-biased expression (fig. S6). Age was
positively associatedwith 33% (16/48) of tissues
and was the strongest for esophagus mucosa,
liver, and sun-exposed skin (Fig. 1E). We note
that power may have been too low to detect
some associations; for example, there were
few young GTEx brain donors.
Extending this model to include a random

donor effect, we estimated that 8.8% of varia-
tion in PZM burden can be attributed to sys-
tematic properties of donors that extend across
some or all tissues of a donor, even after con-
trolling for metadata such as age and sex. This
donor variance component estimate was larger
in African Americans [14.1%; 95% confidence
interval (CI): 10.5 to 21.5%] than in European
Americans (8%; 95% CI: 6.5 to 9.1%) (Fig. 1F).
These unexplained donor-specific effects could
have both genetic and environmental bases.
Notably, a recent study estimated that 5.2% of
variance in germline mutation rate could be
attributed to family-specific effects (19). In total,
our results indicate that variation in PZM rate
among individuals is less constrained than
variation in germline mutation rate and that
there is considerable scope for heritable varia-
tion in observable PZM burden. The inability
of the models to explain all variation implies
that there are additional factors associated
with detectable mutation burden and/or that
stochasticity plays a major role in mosaicism
(20, 21). A reanalysis of the data that incor-
porated information on the apparent clonality
of mutations produced models with similar
biological conclusions and less explanatory
power (16) (fig. S7 and table S11).

Mutation spectra are variable across tissues
and reflect known biological processes

Diverse processes mutate the human genome
with characteristic mutational signatures (22).
Thus, the observed mutation spectra can pro-
vide insight on the types and relative activities
of the unobserved mutation processes that
occurred. We estimated the contribution of
canonical mutation signatures for each tis-
sue. Because of the relatively low number of
detected mutations, mutation spectra were
reliably deconstructed for only four tissues
or cell types (16) (fig. S8). Consistent with ex-
pectations and previous studies (3, 6, 7), the
mutations were resolved into mutational
signatures associated with age in all tissues
and ultraviolet light exposure in skin-related
tissues (fig. S9).
For a higher powered, but coarser-grained

analysis of mutation spectra, we assessed the
frequency of the six base substitutions across
all tissues (fig. S8). Mutation spectra were
highly variable across tissues, which suggests
that mutational mechanisms and their rela-
tive activity may vary across the human body.

C > T was the most common mutation type
across tissues, whereas C > G and T > A were
the least common. Hierarchical clustering of
the mutation types revealed two significant
large clusters (P < 1 × 10−3, bootstrap resam-
pling). We denoted these as cluster A (marked
by depleted T > G) and cluster B (marked by
elevated T > G). Cluster membership was as-
sociated withmutation burden, which suggests
that the underlying mutation mechanisms
may be coupled to the frequency of mutagenic
events (P = 3.8 × 10−2, Mann-Whitney U test).
Additionally, cluster B was enriched with neural
ectoderm tissues compared with cluster A (P =
7.7 × 10−6, Fisher’s exact test). These clusters
could not be attributed to differences in sam-
ple processing (16) (fig. S10). We speculated
that these clusters may reflect differences in
the relative contributions of mutations ac-
quired during prenatal development and mu-
tations that accrue during age-related tissue
renewal. To further study the properties of
prenatal and postnatal PZMs, we developed
methods to define the developmental origin
of each PZM.

The developmental origins of prenatal PZMs
Multitissue PZMs exhibit prenatal properties

We defined a multitissue PZM as a PZM that
was detected in at least two tissues from the
same donor. Because the PZM burden was
relatively low across tissues (Fig. 1) and PZMs
are predominantly under neutral selection
(11), we hypothesized that a multitissue PZM
was the result of a single PZM that occurred
in a common ancestor of the mutated tissues.
Because the common ancestors of any set of
GTEx tissues (excluding cell lines) occurred
before the end of organogenesis, multitissue
PZMs may have occurred prenatally. Consistent
with this hypothesis, we found several lines of
evidence suggesting that themultitissue PZMs
occurred prenatally (16) (figs. S11 and S12). We
found a significant positive correlation be-
tween VAF and the fraction of the donor’s
tissues that had the multitissue mutation de-
tected (Spearman’s r = 0.34; P = 9.7 × 10−56,
Spearman’s rank correlation test; fig. S11A).
Controlling for technical and biological con-
founders, age was not significantly associ-
ated with multitissue mutation burden for
most tissues but was significantly associated
with single-tissue mutation burden for a large
number of tissues (fig. S11, B and C). Addi-
tionally, the multitissue age regression coef-
ficients were significantly smaller than the
single-tissue age regression coefficients (P =
0.016, Wilcoxon signed-rank test) (fig. S11D).
We denoted these multitissue mutations as
prenatal PZMs, and all other mutations were
called postnatal PZMs.We note that theremay
be an error rate associated with this clas-
sification because somemutations labeled as
postnatal may have been prenatal mutations
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lost in some tissues or may have been unde-
tected in some donors because of limited
samples.

PZM burden and spectra vary throughout
prenatal development with most mutations
occurring during early embryogenesis

To determine when and where PZMs occur in
prenatal development, we developed a meth-
od called LachesisMap to map the origin of
1864 prenatal mutation events (16) (Fig. 2A,
figs. S13 to S16, and table S12). Briefly, the
method takes as input a directed rooted tree

representing the developmental relationships
among the tissues and a list of multitissue
PZMs and maps the PZMs to the tree while
accounting for differential mutation detec-
tion power across the genome, human body,
and developmental tree. The algorithm out-
puts a list of edge weights that represent the
estimated fraction of PZMs that occurred in
that spatiotemporal window of development.
The mutation burdens across developmen-

tal time and space were highly variable, with
edge weights ranging from 0.04 to 23%, and
appeared compatible with an exponential dis-

tribution (P = 0.56, Kruskal-Wallis test). The
ensemble of observed edge weights was sig-
nificantly different from random (P = 2.2 ×
10−308, multinomial goodness-of-fit test), and
the majority of individual edge weights (56%,
14/25) were significantly different from ran-
dom after Benjamini-Hochberg correction
(permutation tests) (fig. S17). The top two edge
weights, representing 41% of prenatal muta-
tion events, were the zygote-to-gastrula tran-
sition and the ectoderm-to–neural ectoderm
transition, which suggests that most detect-
able prenatal mutations occur during early
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Fig. 2. Mutation burden and spectra of prenatal PZMs across time and
space. (A) Prenatal PZM mutation burden. Edge color represents the percent of
prenatal PZMs mapped to that period in development. Thick gray edges are
edges with limited mutation detection power. (B) Edge color represents the
predominant mutation type of mutations mapped to that edge, as established by
binomial testing. Thin gray edges are edges with no predominant mutation type.

See fig. S13A for the full set of vertex labels. Adult tissues (leaves of tree)
are colored using the GTEx coloring convention (see table S8 for a complete
legend). (C) Local variation in mutation spectra across developmental space and
time. Each facet represents the mutation spectra observed in a parent edge
(leftmost bar plot) and its children’s edges. Statistically significant differences in
mutation spectra are annotated with asterisks.
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embryogenesis (14, 23). Notably, the edge muta-
tion burdens were not explained by differential
edge mapping power across the developmen-
tal tissue tree (16) (fig. S17). It is also important
to note that these are estimates for mutations
that are detectable in adulthood—the data do
not allow for extrapolating to all developmen-
tally acquired mutations because some frac-
tion is likely lost through cell death, revertant
mosaicism, etc.
We next investigated whether the muta-

tional processes, as proxied by their mutation
spectra, varied over development, using bino-
mial tests to establish the predominant muta-
tion type on each edge. There was a strong
dichotomy between ectoderm lineages, which
tended to have T > Gmutations, and endoderm
andmesoderm lineages, which tended to have
C > A mutations (Fig. 2B). These observations
could not be attributed to differences in sam-
ple processing (16) (fig. S10).
In addition to global changes in mutation

across the tree, we also examined local changes
by comparing mutation spectra between sib-
ling edges (local spatial differences) and parent-
child edges (local temporal differences) (Fig.
2C). Significant spatial and temporal varia-
tion was detected during gastrulation and in
ectodermal lineages (Q < 0.05, multinomial
goodness-of-fit test). Differences inmutation
spectra across developmental space [n = 4/8
(50%) sibling edge comparisons] occurred at
similar rates as differences along developmen-
tal time [n = 8/18 (44%) parent-child compar-
isons] (P = 1.00, Fisher’s exact test).
Together, these results suggest that the mu-

tational mechanisms that operate during de-
velopment may vary across space and time.
Although published data are limited, others
have also detected variations in mutation spec-
tra in fetal stem cells in humans (24) and dur-
ing early embryogenesis and gametogenesis in
mice (25). We repeated these analyses using a
simplified germ layer tree and observed sim-
ilar results as from the full developmental
tissue tree (fig. S18), which suggests that the
development tree definition does not subs-
tantially affect the results.

The functional consequences of PZMs across
the human life span

The GTEx PZM atlas provides a great oppor-
tunity to compare the quality and fitness con-
sequences of mutations that arise at different
stages of the human life cycle. First, we an-
notated the PZM atlas with Combined Anno-
tation Dependent Depletion (CADD), a widely
used machine learning classifier of genetic
variation (26). The CADD score of a genetic
variant is a quantitative prediction of dele-
teriousness, measured on an evolutionary time
scale. A mutation was defined as deleterious if
the PHRED-scaled CADD score was ≥20. We
performed a series of systematic comparisons

of PZM CADD scores to identify differences
across mutation VAF, developmental time,
developmental location, and tissue type.
When comparing prenatal and postnatal

PZMs, we found a major effect of VAF on the
distribution of CADD scores (Fig. 3A and fig.
S19). For prenatal PZMs, low-VAF PZMs were
much more deleterious than high-VAF PZMs
(odds ratio = 1.9, P = 2.6 × 10−7, Fisher’s exact
test), whereas no such differencewas observed
for postnatal PZMs (P = 0.24, Wald test). Fur-
thermore, we found that for low-VAF PZMs, del-
eteriousness decreased over time (odds ratio =
0.58, P = 1.4 × 10−9) but remained constant for
high-VAF PZMs (P = 0.15). These results sug-
gest that mutations that appear deleterious
on an evolutionary time scale may be benign
or even beneficial to a growing fetus so long
as the mutation remains in a small fraction
of cells.
Next, we explored whether deleteriousness

varied across the adult human body by com-
paring postnatal PZMs in each adult tissue.
PZM deleteriousness was similar across tis-
sues; however, there were a few exceptions
(Fig. 3B). PZMs in 6/48 (13%) tissues were sig-
nificantly less deleterious than the average
tissue, and PZMs in 3/48 (6%) tissues were
more deleterious (Q < 0.05, Wald test). When
analyzed together, the PZMs from all brain re-
gions were also more deleterious than average
(P = 0.02, Fisher’s exact test).
Finally, to provide context for our results, we

compared the deleteriousness of GTEx PZMs
with other classes of single-nucleotide genetic
variation: (i) random mutations (simulated
from two different models of neutral evolu-
tion), (ii) standing germline variation [from
gnomAD, a comprehensive database of germ-
line genetic variation (27)], (iii) inherited
de novo mutations from cases of disease and
controls [from denovo-db, a curated database
of de novo mutations (28)], and (iv) somatic
mutations observed in cancer (from TCGA, a
comprehensive database of cancer somatic
mutations) (29).
The low-VAF prenatal PZMs were the most

deleterious class of genetic variation inves-
tigated (Fig. 3C and fig. S19). Using the sim-
ulated random mutations as a reference, we
found postnatal PZMs, de novo mutations in
cases, and somatic cancer mutations to be
significantly enriched for deleterious muta-
tions (Q < 0.05, Fisher’s exact test). De novo
mutations in controls and high-VAF prenatal
PZMswere not statistically different from sim-
ulated random mutations. Inherited germline
variants were depleted of deleterious muta-
tions, with the extent of depletion increasing
with population frequency. These observations
were recapitulated in three validation datasets
that used a variety of nucleic acid sources and
variant-calling methods (16) (figs. S20 to S23
and table S13).

The selective constraint on the transcribed
exome varies throughout the human life span
The deleteriousness results suggest that selec-
tion pressure may be different across classes
of genetic variation. We investigated this hy-
pothesis by estimating the selection pressure
on PZMs and other classes of genetic variation
using dN/dS, a normalized rate of nonsynon-
ymous to synonymous mutations (30). dN/dS
values >1 were interpreted as evidence for
positive selection, whereas negative selection
can lead to dN/dS values <1. Using dNdScv, a
method for the study of somatic evolution (11),
we assessed dN/dS across VAF, developmen-
tal time, developmental location, and tissue
type and contextualized the results by com-
paring selection pressures on PZMs with other
classes of genetic variation as before (16) (Fig.
3, D and E, and figs. S24 to S26).
For most tissues of the body, single-tissue

dN/dS was not significantly different from 1,
consistent with previous work (11). However,
for postnatal missense mutations, dN/dS was
higher for high-VAF PZMs compared with low-
VAF PZMs for all tissues en masse and for
three tissues or cell types individually [whole
blood, Epstein-Barr virus (EBV)–transformed
lymphocytes, and adrenal gland] (fig. S24).
Additionally, dN/dS estimates for high-VAF
postnatal PZMs were higher in cancer driver
genes than noncancer driver genes for all tis-
sues enmasse, sun-exposed skin, and esophagus
mucosa—tissues where the action of adaptive
evolution has already been documented (7, 31)
(Fig. 3D). These observations are consistent
with the expectation that positive selection on
a mutation may result in clonal growth, and
we detected mutations associated with clonal
hematopoiesis of indeterminant potential (CHIP)
in the blood of individuals without apparent
hematological malignancies (16) (fig. S27). Six
separate CHIP mutations were detected in
seven samples (table S14). Two of the muta-
tions (IDH2 R140Q and MYD88 L273P) are in
the 99.99th percentile of recurrent mutations in
hematopoietic and lymphoid cancers and have
been shown to have gain-of-function properties
(32, 33). In total, 0.1% (1/746) of whole-blood
donors and 3.5% (6/174) of EBV-transformed
lymphocyte donors had a CHIP mutation. No-
tably, none of the CHIP-positive donors had a
history of cancer. The observed CHIP preva-
lence in GTEx is similar to what we would ex-
pect given the age demographics of the cohort
and published prevalence rates (2).
dN/dS for the low-VAF prenatal PZM class

was nominally greater than 1 (missense dN/dS=
1.25, P = 0.047) (Fig. 3E). The high-VAF post-
natal nonsense mutations showed dN/dS val-
ues much less than 1, which can be attributed
to sampling bias against transcripts carrying
premature stop codons, because of nonsense-
mediated decay (34). Altogether, the deleterious-
ness and selection results suggest a dichotomy
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Fig. 3. Deleteriousness and selective pressure changes as a function of
VAF, space, time, and classes of genetic variation. (A) Relative odds of
detecting deleterious mutations across developmental time (gray bars) and VAF
bins (green bars). (B) Histogram of the odds of detecting deleterious postnatal
PZMs in each tissue compared with the average tissue. Tissues are colored using
the GTEx coloring convention (see table S8 for a complete legend). Tissues with
significant odds ratios (at Q ≤ 0.05) are marked with asterisks and labeled with their
names. The vertical dashed line at odds ratio = 1 indicates no difference in odds.
(C) Relative odds of detecting deleterious PZM mutations compared with different
classes of genetic variation. Dashed line at odds ratio = 1 indicates no difference
in odds of detecting deleterious mutations compared with reference group. Error bars

represent 95% CIs. (D) Comparison of postnatal PZM selection pressure in
cancer and noncancer genes. For clarity, only PZM datasets that had different
selection pressure between cancer and noncancer genes are shown. (Top)
PZM datasets that had variable selection when using all mutations. (Middle)
High-VAF mutations. (Bottom) Low-VAF mutations. Error bars represent 95% CIs.
Some CIs are smaller than the data point so are not directly visible. (E) dN/dS
values for classes of genetic variation, as in (C). CIs are plotted behind each data
point and are sometimes smaller than the data point size. dN/dS = 1 indicates
neutral expectation. AF, allele frequency; BRCA, breast invasive carcinoma; GBM,
glioblastoma multiforme; LIHC, liver hepatocellular carcinoma; PAAD, pancreatic
adenocarcinoma; SKCM, skin cutaneous melanoma.
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between growth within an individual versus
growth within a population: Mutations that are
selected for within parts of an individualmay be
detrimental when considered across the entire
life span.

Characterization of germ cell PZMs
Construction of a catalog of germ cell PZMs
throughout the germ cell life cycle

Although a great deal is known about germ-
line variation (27) and de novo mutations
(25, 35–39), much less is known about the
PZMs that seed these forms of inherited ge-
netic variation. To better understand PZMs
in germ cells, we characterized and contrasted
the mutation burden, spectra, and deleteri-
ousness of germ cell PZMs across the germ cell
life cycle.
Because of cell composition differences be-

tween male and female gonads, PZMs in testes
samples could be confidently mapped to germ
cells, but PZMs in ovary samples could not (16)
(fig. S28 and table S15). Therefore, only tes-
ticular germ cell PZMs were analyzed further.
Germ cell PZMs were classified into gonoso-
mal (present in somatic and germ cells) and
germ cell–specific. In total, 571 germ cell PZMs
were identified in the bulk testis from 281 testis
donors, of which 12% were putative gonosomal
PZMs and the remaining 88% were putative
germ cell–specific PZMs. As expected, germ cell–
specific PZM burden was positively associated
with donor age (P = 0.03), but gonosomal mu-
tation burden was not (P = 0.28). Addition-
ally, as expected, germ cell–specific PZMs had
lower VAFs than gonosomal PZMs (P = 1.3 ×
10−14, Mann-Whitney U test; fig. S28E).
Testicular germ cell PZMs represent the full

reservoir ofmutations that can be passed on to
progeny. We hypothesized that the selection
pressures on spermatogenesis, fertilization,
and prenatal development may alter the types
of mutations that pass through each of these
bottlenecks of life. To examine germ cell PZMs
that passed the spermatogenesis bottleneck,
we generated whole-exome sequencing data
on small, 200-cell pools of ejaculated sperm
and identified and validated 83 PZMs in the
same genomic regions that we assessed in
the GTEx RNA-seq samples (defined as the
allowable transcriptome) (16) (tables S1 and
S16 and fig. S29). To examine germ cell PZMs
that completed prenatal development, we used
~17,000 de novo mutations in the allowable
transcriptome from denovo-db (28).
The mutation spectra for each germ cell

mutation dataset were statistically different
from the others (Fig. 4A and table S17; chi-
square test). Although C > T was the most com-
mon mutation type in all datasets, C > A was
the most variable. Hierarchical clustering of
the spectra nested the classes in developmen-
tal order, indicating that the mutation spec-
tra shift during development (Fig. 4A, inset).

Given the complex ascertainment of these di-
verse mutation call-sets, we cannot exclude the
possibility that some of the apparent structure
is attributable to differences in mutation de-
tection among sources, as a result of either
bioinformatic or experimental effects.

Deleterious mutations are likely purged during
the germ cell life cycle

Consistent with the action of purifying selec-
tion on male germ cells, we found that muta-
tion deleteriousness decreased over the germ
cell life cycle when comparing testicular germ
cell PZMs and de novo mutations in controls
(Fig. 4B). By contrast, de novo mutations from
cases of disease were just as likely to be del-
eterious as testis PZMs. To replicate these ob-
servations, we performed a similar analysis
using only DNA-based measurements from
published datasets (10, 16, 40) (fig. S30). Both
the fraction of coding mutations and the odds
of detecting a deleterious mutation decreased
over the germ cell life cycle in the independent
datasets (fig. S30). Donor age was not associ-
atedwith PZMdeleteriousness in each dataset.

The mutation rate during male gametogenesis
is dynamic

We estimated the mutation rate (the number
of mutations in the transcriptome per cell di-
vision) for each of three major stages during
male gametogenesis (16). Consistent with pre-
vious work (37), the observed mutation rate
was higher in prenatal time points than the
postnatal time point (Fig. 4C). The observed
lower mutation rate during adulthood may be
a strategy to limit the number of deleterious
mutations that are passed to the next genera-
tion. Unlike Rahbari et al. (37) and other studies
that have used transmitted de novomutations
to measure mutation rates (35, 36, 38, 39),
these estimates reflect mutation rates in germ
cells in the testis and thus offer insight on
germ cell mutagenesis.

Blood is a poor surrogate for measuring
mosaicism of gonosomal PZMs

Motivated by the fact that only a small subset
of tissue types is easily and ethically accessi-
ble in antemortem human subjects research,
we hypothesized that more-accessible tissues
may be useful surrogates for examining pre-
natal PZMs in less-accessible tissues. The re-
sults of such analyses may shed light on the
cellular dynamics of human development and
implications for preconception genetic coun-
seling and de novo mutation discovery.
We fit a mixed-effects model to predict

whether a gonosomal PZMwas detected in a
somatic tissue while controlling for techni-
cal effects (16). Unexpectedly, 88% (38/43) of
tissues had significantly higher odds of detect-
ing gonosomal PZMs than in blood (Fig. 4D),
which suggests that blood is a poor surrogate

for detecting gonosomal PZMs. Additionally,
76% (32/42) of somatic tissues had a signifi-
cant linear correlation between the somatic
VAF and the germ cell VAF (Fig. 4, E and F;
Q < 0.05, Pearson’s correlation test), which
suggests that somatic tissues may offer a faith-
ful representation of gonosomal PZMs in germ
cells. These observations were not an artificial
result of germline variant filtering or our cross-
sample mutation-calling strategy (16) (fig. S31).
Although 82% of GTEx donors were geno-
typed using blood, for 6% of GTEx donors, a
nonblood tissue was used for genotyping, and
for 12% of donors, no genotyping data were
available. There was no detectable difference
among these three groups in the probability
of detecting a prenatal PZM in blood while
controlling for other confounders; this sug-
gests that poor detection of gonosomal PZMs
in blood is not simply the result of aggressive
germline filtering using genotype calls from
blood-derived DNA (16).

Discussion

In this work, we present one of the most com-
prehensive and diverse surveys of PZM varia-
tion in normal individuals, which should prove
a valuable resource for understanding the
causes and consequences of PZMs across the
body. By linking these mutation calls to
the vast data and tissue resources of the GTEx
project, there are a number of analyses that
could be attempted. First, if there is a heritable
component to PZM burden, variants modu-
lating this burden may be detectable using
genome-wide association studies (GWASs)
(41, 42). Second, the impact of PZMs on gene
expression traits, both in cis and trans, can
be directly assessed (9, 43). Third, the spatial
and cell-type distribution of the mutations re-
ported here could be mapped in banked tis-
sue samples from the GTEx donors (7, 44), and
the mutation type and burden of each sam-
ple could be associated with histology images
collected by the GTEx project. We performed
extensive validation of our PZM call-set, and
these validation data will be helpful in train-
ing algorithms for PZM detection.
We observed a number of notable features

regarding the developmental origins of muta-
tions that deserve follow up. Most intriguing is
a class of low-VAF prenatal mutations that ap-
pear to have the highest fraction of deleterious
mutations across the human life span, even
considering disease states. This observation,
based on a definition of deleteriousness on an
evolutionary time scale, suggests that the func-
tional consequences of mutation can have op-
posite fitness effects at different stages of the
life cycle of genomes and in different cellular
contexts. One well-established example of marked
differences in fitness effects between somatic
and germline cells is the RAS-MAPK pathway,
in which gain-of-function mutations provide a
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transmission advantage to male germ cells but
are often reproductively lethal for the resulting
conceptus (45, 46). Although someparallels have
been noted between molecular mechanisms
of carcinogenesis and normal embryogenesis

(47, 48), there are essentially no data on the po-
tential adaptive effects of PZMs on embryonic or
fetal development in healthy individuals.
We advise caution in the interpretation of the

dN/dS values for multitissue PZMs. Although

we have evaluated obvious sources of technical
error, such as themultitissue ascertainment (fig.
S25) and small sample size (fig. S26), there may
be other complexities influencing this rather
general statistic, including recurrent mutation
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Fig. 4. Germ cell PZM characteristics. (A) Mutation spectra of different germ
cell mutation classes. Number of mutations used in each dataset is listed in the
inset. (Inset) Hierarchical clustering of germ cell mutation spectra. (B) Relative
odds of detecting deleterious mutations across germ cell datasets compared
with testis PZMs. Bars are colored by dataset. Horizontal black line at odds ratio
= 1 denotes no difference in odds. (C) Germ cell mutation rate varies during
gametogenesis in males. (D) Most somatic tissues have a higher odds of
detecting a gonosomal PZM than blood. Natural log odds ratio for detecting a

gonosomal PZM in each somatic tissue compared with blood. Dashed line at
Y = 0 denotes no difference in odds. (E) Comparison of gonosomal PZM VAF in
nontestis tissues versus testis tissue. (F) Distribution of tissue-specific Pearson
correlations of log10-transformed gonosomal PZM VAFs in each somatic tissue
and testis. Significant correlations at Q ≤ 0.05 are marked with asterisks.
(G) Schematic of the difference in selective constraint between germline and
somatic genetic variation partitioned into discrete stages of the life cycle. [(A),
(B), (C), and (D)] Error bars denote 95% CIs.
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and changes in mutation processes through-
out development. Clearly it will be important
to continue research into appropriate statisti-
calmethods for assessing fitness consequences
of PZMs from multitissue datasets.
We found that blood-derived RNA appeared

to be a poor proxy for detection of gonosomal
mutations. On the basis of these results, for
trio studies, we recommend that sperm (a di-
rect readout of germ cells) should be profiled
in males and skin (which is predicted to be
more than five times as likely as blood to
contain a gonosomal PZM) should be profiled
in females. It should be noted that these find-
ings on gonosomal PZMs were based on anal-
ysis of data exclusively from male tissues. We
are optimistic that this conclusion will hold
for female gonosomal mutations. In humans,
male and female germ cells are both formed
from a common progenitor cell type, primor-
dial germ cells (PGCs). Early embryonic devel-
opment, up to and including the formation
of PGCs, is the time frame inwhich gonosomal
mutations occur and is thought to occur iden-
tically in males and females (49). The devel-
opmental phylogeny that relates PGCs and
the three germ layers is unclear, and the pat-
terns of gonosomal mutations observed across
human tissues may yield important insight
into the matter. Some studies have indicated
that PGCs may be most related to the meso-
derm: Incipient mesoderm or mesendoderm
cells can be induced to form PGC-like cells
in vitro (50, 51), and PGCs may share expres-
sionmarkerswithmesodermor primitive streak
(52). However, loss of BLIMP1, a key driver of
germline identity, from germline-competent
cells leads to activation of a default neuronal
differentiation program (50). When mapping
gonosomal mutations frequencies across the
body, we found that brain tissues were most
similar to the testis (Fig. 4F). This might be an
indication that PGCs and the ectoderm share a
closer developmental origin.
We reported a large difference in deleteri-

ousness and dN/dS inferred from PZMs and
inherited germline variants, consistent with
strong purifying selection reducing the trans-
mission of deleterious mutation across gen-
erations. An important future direction is to
dissect and quantify the physiological basis of
this purifying selection (Fig. 4G). With careful
thought and experimental design, it should
be possible to model the steps of the human
life cycle where purifying selection can occur,
to estimate the strength of selection at each
step, and to translate these data into life stage–
specific measures of selective constraint for
each gene in the genome. This would be of
great benefit to human geneticists, who rely
heavily on selective-constraint measures ag-
gregated across the life cycle (such as CADD)
for interpretation of genetic variants in the
context of disease (53, 54). Stage-specific con-

straint metrics could augment current methods
for variant interpretation to be more relevant
to the tissue and developmental time affected
by a disease.

Materials and methods summary
GTEx data

We detected PZMs in the GTEx v8 dataset. To
achieve a high-quality dataset, we removed
RNA-seq samples that had an RNA integrity
number (RIN) < 6, were derived from tissues
with overall poor quality (8), or had an ex-
tremely high PZMmutation burden (table S2).
We also confirmed that none of the analyzed
samples were from transplanted tissue. After
our quality control, there were 14,672 samples
from 944 donors from 48 diverse tissue and
cell types. Library preparation, sequencing,
alignment, and GTEx quality control are
described in detail in Aguet et al. (15).

Algorithms for detecting PZMs

LachesisDetect contains four basic steps. First,
alignment files are filtered for extremely high-
quality alignments. Next, the algorithm lever-
ages cohort-wide information by simultaneously
analyzing all samples to estimate position-
specific error models for >115 Mb of the tran-
scriptome. LachesisDetect uses these models
to detect putative PZMs with single-sample
calling. Third, the method removes sources
of false-positive PZMs, such as RNA editing
and allele-specific expression of germline var-
iants, using >15 filters based on theoretical
and experimental validation metrics. In the
last step, the method leverages donor infor-
mation by jointly analyzing all samples in a
donor to detectmutations with low power and
estimate empirical false-positive rates (fig. S1).

PZM validation

We performed several orthogonal validation ex-
periments to quantify the FDR of themutation-
calling algorithm. These efforts included both
in silico and experimental approaches and in-
volved analysis of both DNA and RNA from
the tissues used for mutation detection. A
summary of the validation results is provided
in table S3. We analyzed independent ge-
nomics datasets generated by the ENCODE
project on four GTEx donors, encompassing
245 DNA assays and 67 RNA assays generated
from four GTEx donors. Finally, we generated
our own validation data by performing tar-
geted DNA-seq of >1650 putative PZMs using
DNA from GTEx donors.

Mutation burden modeling

To evaluate biological and technical sources of
variation in mutation burden, we used linear
mixed-effectmodels.We explored a large variety
of model choices to arrive at our final modeling
framework, comparing modeling choices using
deviance, stability of model fitting, and other

diagnostics. We used type II ANOVA to sum-
marize the relative contributions of covariates.

Algorithm for mapping PZMs to a
developmental tree

Wemanually derived two developmental tissue
trees that represent thephylogenetic relationships
among GTEx tissues during human develop-
ment using information from the literature—
the full tree and the simplified germ layer tree.
We then developed an algorithm, LachesisMap,
to reconstruct the phylogenetic history of multi-
tissue PZMs. The algorithm jointly analyzes all
multitissue PZMs and accounts for missing
data aswell as differential PZMdetectionpower
resulting from differences in VAF, expression
level, and tissue profiling in the dataset.

Sperm sequencing experiments

Ejaculated sperm and venous blood were
collected from a European American. Sperm
samples had normal sperm density, sperm
motility, and morphology. Fresh ejaculates
were stained using the LIVE/DEAD Sperm
Viability Kit (Invitrogen) and propidium iodide
(PI). Sperm samples were then selectively sorted
using fluorescence-activated cell sorting (FACS)
into 96 well plates (~200 sperm cells per well)
and 5-ml Falcon tubes based on their stain-
ing. We used MALBAC amplification (55) to
prepare up to 1.5 mg of DNA from each pool of
sperm using a kit, and six pools were selected
for sequencing. Exome library preparation was
performed according to the manufacturer’s
protocol using 50 ng of preamplifiedMALBAC
reactions or DNA extracted from blood.
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