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Abstract 

Postzygotic mutations (PZMs) begin to accrue in the human genome immediately after 

fertilization, but how and when PZMs affect development and lifetime health remains unclear. 

To study the origins and functional consequences of PZMs, we generated a multi-tissue atlas of 

PZMs from 948 donors using the final major release of the Genotype-Tissue Expression (GTEx) 5 

project. Nearly half the variation in mutation burden among tissue samples can be explained by 

measured technical and biological effects, while 9% can be attributed to donor-specific effects. 

Through phylogenetic reconstruction of PZMs, we find that their type and predicted functional 

impact varies during prenatal development, across tissues, and the germ cell lifecycle. 

Remarkably, a class of prenatal mutations was predicted to be more deleterious than any other 10 

category of genetic variation investigated and under positive selection as strong as somatic 

mutations in cancers. In total, the data indicate that PZMs can contribute to phenotypic variation 

throughout the human lifespan, and, to better understand the relationship between genotype and 

phenotype, we must broaden the long-held assumption of one genome per individual to multiple, 

dynamic genomes per individual. 15 

One-Sentence Summary  

The predicted rates, functional effects and selection pressure of postzygotic mutations vary 

through the human lifecycle. 

Main text 

The effects of age ravage all tissues of the body, but the pace and consequences of age-related 20 

decay varies among tissues and people. The accumulation of DNA damage is thought to be a 
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primary agent of age-related disease(1), and surveys of postzygotic mutations (PZMs) in normal 

tissues (e.g., blood(2–4), brain(5), and skin(6, 7)), and across the body (8–10), have found PZMs 

to be pervasive across the genome and individuals. However, beyond cancer there are few 

conditions where PZMs are known to have a causal role. Due to the high cost and technological 25 

challenges of PZM studies, a general understanding of how and when mutation affects the 

function of specific cell and tissue types is essential for defining research priorities. One way to 

prioritize hypotheses about mutation and disease is to systematically characterize the fitness 

consequences of PZMs across a broad range of tissues. Surveys of normal tissues have found that 

PZMs appear to accrue neutrally(9, 11), but positive and negative selection do occur in specific 30 

genes and cellular contexts, suggesting PZMs affect cellular function. 

Another fundamental question is how the timing of mutation modulates risk for diseases. As 

clearly demonstrated in oncology, it is possible to detect disease-causing PZMs and augment 

clinical care years before clinical disease is recognized(12, 13). If PZMs that confer risk for 

disease accrue across the lifespan, the PZM profile in a healthy individual could contain 35 

actionable prognostic information. While the relative contributions of prenatal and postnatal 

PZMs to disease risk are unclear, due to the massive cell proliferation during development, 

prenatal PZMs have the potential to affect many cells, and thus, play an important role in 

disease. 

The vast majority of PZM research has been single-tissue studies largely focused on tissues that 40 

are easily accessible, such as blood, liver, skin and colon. An exciting next generation of PZM 

studies now examine PZMs across multiple tissues within an individual(8–10, 14). However, the 

relatively small number of individuals and tissue types used in such studies have limited the 
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ability to ascribe sources of mutation variation among individuals or provide detailed 

descriptions of embryonic mutations that occur after the first few cell divisions. To expand our 45 

knowledge of PZMs in normal tissues, we developed a suite of methods called Lachesis to 

identify single-nucleotide PZMs from bulk RNA-seq data and predict when the mutations 

occurred during development and aging (Fig. S1). We ran the algorithm on the final major 

release of GTEx, a collection of RNA-seq data from 17,382 samples derived from 948 donors 

across 54 diverse tissues and cell types, to generate one of the most comprehensive databases of 50 

PZMs in normal tissues (tables S1 and S2). We used this atlas, and the rich metadata on GTEx 

donors, to characterize sources of variation in PZM burden among individuals and unveil the 

spatial, temporal, and functional variation of PZMs in normal development and aging. This 

reference of normal PZM variation will be instrumental to identifying abnormal variation 

associated with disease. 55 

DNA PZMs are accurately detected in bulk tissue RNA-seq 

We evaluated the accuracy of the algorithm using several in silico and experimental methods 

(fig. S4, tables S3-S6). For experimental validation, we obtained four independent DNA- and 

RNA-based validation datasets generated from the same tissue samples as the primary data 

covering 296 unique genomic sites across 95 samples. The original RNA-seq VAF was highly 60 

correlated with the validation DNA VAF (Spearman’s ρ = 0.82, P-value = 2.3E-25) suggesting 

RNA-seq based VAFs are representative of true mutant cell frequencies. PZMs with VAFs as 

low as 0.16% and PZMs found in multiple tissues and multiple donors were validated. The 

average FDR across all validation datasets was 27% and is lower than published methods for 

detecting PZMs from RNA-seq (e.g., 34% - 82%(8, 10, 15)) (Fig. S1E and table S3). Since 65 
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mutations may fail to validate due to spatial variation in mosaicism, the FDRs may be 

overestimates. A small subset of samples (~5%) had an extraordinarily high PZM burden; we 

used additional experimental validation data from 1,509 putative PZMs in these samples to 

demonstrate that these outliers were likely technical artifacts, and not hypermutated tissues 

(Supplementary result 2.1). 70 

We used power simulations to estimate the algorithm’s sensitivity. As expected, simulated PZMs 

with larger VAFs and higher coverage had higher PZM detection power. At the middle quintile 

of coverage ([673, 1395) fold coverage), PZMs with VAFs as low as 0.66% could be detected in 

at least 90% of simulations, suggesting the method has reasonable sensitivity (Fig. S1F).  

PZMs are pervasive and highly variable among donors and tissues 75 

Following sample and PZM quality control, 56,585 PZMs were detected with variant allele 

frequencies (VAFs) as low as 0.04% and a median VAF of 0.5% (table S7). 100% of the donors 

and 77% of the tissue samples had detectable mosaicism (table S2). The median mutation 

burden per tissue ranged from 0.03 PZMs/Mb in cerebellar hemisphere to 0.47 PZMs/Mb in liver 

(Fig. 1A). Strikingly, the observed mutation burden was more variable within a tissue than 80 

between tissues (mean median absolute deviation (MAD) within a tissue = 0.07 PZMs/expressed 

Mb; MAD across tissues = 0.02 PZMs/expressed Mb). This observation suggests that processes 

generating detectable PZMs may be more variable across donor than across tissue types. 
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Fig. 1. PZM burden is correlated with biological and technical variables.Each datapoint 85 
represents a single tissue sample and is colored by tissue. Median PZM burden in a tissue 
denoted by horizontal black line. Tissues are sorted by increasing median PZM burden. A 
pseudocount of 1 mutation was added to each sample before normalization and log 
transformation for visualization. (B) We fit a regression model for single-tissue PZM burden 
using 12 covariates and 48 tissues. ANOVA F statistics for each covariate in the model. Larger F 90 
statistics correspond to greater explanatory power of the covariate. (C) Regression coefficients of 
tissue-ancestry interactions and (D) tissue-sex interactions (female used for reference level) 
indicate strong effects of ancestry and sex on PZM burden. AA = African American. AS = Asian 
American. EA = European American. * in C denote trends that are consistent with cancer 
incididence trends (E) Significant positive tissue-age interaction effects were detected for 16/48 95 
(33%) tissues. (F) Variance component estimates of donor-specific random effects on PZM 
burden indicate that 8%-15% of variation among tissues can be ascribed to donor effects, which 
could be genetic and environmental. Dashed vertical lines at beta = 0 in interaction plots denote 
no association between mutation burden and interaction. Error bars represent 95% CIs. Tissues 
are colored using the GTEx coloring convention (see table S8 for a complete legend). 100 

PZM burden is correlated with biological and technical variables 

To partition and quantify potential sources of single-tissue PZM burden, we fit linear models 

relating technical and biological metadata to single-tissue PZM burdens and selected the best 

fitting model identified from detailed model comparisons (Methods section 1.3). The model 

contained twelve covariates and explained 48% of the variation in mutation burden. Significant 105 

sources of variation were biological (age, tissue, and interactions of tissue with age, sex, and 

reported ancestry) and technical (e.g., mutation detection power and RNA extraction batch) (Fig. 

1B-E). 20.8% (10/48) of tissues showed significant associations with reported ancestry, 

including, as expected, a much lower burden of mutation in sun-exposed skin in African 

Americans and Asian Americans compared to European Americans (8). The incidence rates of 110 

cancer types affecting these tissues have ancestry associations that are consistent (i.e. in the same 

direction as) with the mutation burden associations in 83% (15/18) of comparisons(16), 

suggesting that variation in PZM burden in normal tissues may contribute to differences in 

cancer risk among ancestries (Fig. 1C, table S9). Unexpectedly, males had lower burden in all 
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three skin-related sample types compared to females. Age was positively associated with 33% 115 

(16/48) of tissues and was the strongest for esophagus – mucosa, liver, and sun-exposed skin. We 

note that power may have been too low to detect some associations, e.g., there were few young 

GTEx brain donors. 

Extending this model to include a random donor effect, we estimated that 8.8% of variation in 

PZM burden can be attributed to systematic properties of donors that extend across some or all 120 

tissues of a donor, even after controlling for metadata such as age and sex. We found that this 

donor variance component estimate was larger in African Americans (14.1%; 95% confidence 

interval (CI): 10.5-21.5%) than in European Americans (8%; 95% CI: 6.5-9.1%) (Fig. 1F). 

These unexplained donor-specific effects could have both genetic and environmental bases. 

Notably, a recent study estimated that 5.2% of variance in germline mutation rate could be 125 

attributed to family-specific effects(17). In total, our results indicate that variation in PZM rate 

among individuals is less constrained than variation in germline mutation rate and that there is 

considerable scope for heritable variation in observable PZM burden. The inability of the models 

to explain all variation imply there are additional factors associated with detectable mutation 

burden and/or stochasticity plays a major role in mosaicism(18, 19). 130 

Mutation spectra is variable across tissues and reflect known biological processes 

Diverse processes mutate the human genome with characteristic mutational signatures(20). Thus, 

the observed mutation spectra can provide insight on the types and relative activities of the 

unobserved mutation processes that occurred. We estimated the contribution of canonical 

mutation signatures for each tissue. Due to the relatively low number of detected mutations, 135 

mutation spectra were reliably deconstructed for only four tissues/cell types (fig. S10A). 
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Consistent with expectations and previous studies(3, 6, 7), the mutations were resolved into 

mutational signatures associated with age in all tissues and ultraviolet light exposure in skin-

related tissues (fig. S11). 

For a higher powered, but coarser-grained analysis of mutation spectra, we assessed the 140 

frequency of the six base substitutions across all tissues (fig. S10B). Mutation spectra were 

highly variable across tissues suggesting that mutational mechanisms and their relative activity 

may vary across the human body. C>T was the most common mutation type across tissues 

whereas C>G and T>A were the least common. Hierarchical clustering with bootstrap 

resampling of the mutation types revealed two significant large clusters: cluster A (marked by 145 

depleted T>G) and cluster B (marked by elevated T>G). Cluster membership was associated 

with mutation burden suggesting the underlying mutation mechanisms may be coupled to the 

frequency of mutagenic events (P-value = 3.8E-2, Mann-Whitney U test). Additionally, Cluster 

B was enriched with neural ectoderm tissues compared to cluster A (P-value = 7.7E-6, Fisher’s 

exact test). These clusters could not be attributed to differences in sample processing 150 

(Supplementary result 2.3, fig. S12). We speculated that these clusters may reflect differences 

in the relative contributions of mutations acquired during prenatal development and mutations 

that accrue during age-related tissue renewal (e.g., during mitotic divisions in epithelial tissues). 

To further study the properties of prenatal and postnatal PZMs, we developed methods to define 

the developmental origin of each PZM. 155 
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The developmental origins of prenatal PZMs 

Multi-tissue PZMs exhibit prenatal properties 

We defined a multi-tissue PZM as a PZM that was detected in at least two tissues from the same 

donor. Since the PZM mutation burden was relatively low across tissues (Fig. 1) and PZMs are 

predominantly under neutral selection(11), we hypothesized that a multi-tissue PZM was the 160 

result of a single PZM that occurred in a common ancestor of the mutated tissues. Since the 

common ancestors of any set of GTEx tissues (excluding cell lines) occurred before the end of 

organogenesis, multi-tissue PZMs may have occurred prenatally. Consistent with this hypothesis, 

we found several lines of evidence suggesting the multi-tissue PZMs occurred prenatally 

(Supplementary result 2.4, figs. S13 and S14). We denote these mutations as prenatal PZMs, 165 

while all other mutations are called postnatal PZMs. 

PZM burden and spectra vary throughout prenatal development with most mutations occurring 

during early embryogenesis 

To determine when and where PZMs occur in prenatal development, we developed a method 

called LachesisMap to map the origin of 1,864 prenatal mutation events (Fig 2A, figs. S5-S7, 170 

Methods section 1.5). Briefly, the method takes as input a directed rooted tree representing the 

developmental relationships among the tissues and a list of multi-tissue PZMs and maps the 

PZMs to the tree that accounts for differential mutation detection power across the genome, 

human body, and developmental tree. The algorithm outputs a list of edge weights that represent 

the estimated fraction of PZMs that occurred in that spatiotemporal window of development. 175 

The mutation burdens across developmental time and space were highly variable, with edge 

weights ranging from 0.04% to 23%, and appeared compatible with an exponential distribution 
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(P-value = 0.56, Kruskal-Wallis test). The top two edge weights, representing 41% of prenatal 

mutation events, were the zygote to gastrula transition and the ectoderm to neural ectoderm 

transition, suggesting that most detectable prenatal mutations occur during early 180 

embryogenesis(14, 21). Of critical note, the edge mutation burdens were not explained by 

differential edge mapping power across the developmental tissue tree (Supplementary results 

2.5 and 2.6, fig. S15 and S16). 
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Fig. 2. Mutation burden and spectra of prenatal PZMs across time and space.(A) Prenatal 185 
PZM mutation burden. Edge color represents the percent of prenatal PZMs mapped to that period 
in development. Thick gray edges are edges with limited mutation detection power. (B) Edge 
color represents the predominant mutation type of mutations mapped to that edge, as established 
by binomial testing. Thin gray edges are edges with no predominant mutation type. See fig. S5A 
for the full set of vertex labels. Adult tissues (leaves of tree) are colored using the GTEx coloring 190 
convention (see table S8 for a complete legend). (C) Local variation in mutation spectra across 
developmental space and time. Each facet represents the mutation spectra observed in a parent 
edge (leftmost barplot) and its children’s edges. Statistically significant differences in mutation 
spectra are annotated with “*”. 

We next asked if the mutational processes, as proxied by their mutation spectra, varied over 195 

development, using binomial tests to establish the “predominant” mutation type on each edge. 

There was a strong dichotomy between ectoderm lineages, which tended to have T>G mutations, 

and endoderm and mesoderm lineages which tended to have C>A mutations (Fig. 2B). These 

observations could not be attributed to differences in sample processing (Supplementary result 

2.3, fig. S12). 200 

In addition to global changes in mutation across the tree, we also examined local changes by 

comparing mutation spectra between sibling edges (i.e., local spatial differences) and parent-

child edges (i.e., local temporal differences) (Fig. 2C). Significant spatial and temporal variation 

was detected during gastrulation and in ectodermal lineages. Differences in mutation spectra 

across developmental space (N = 4/8 (50%) sibling edge comparisons) occurred at similar rates 205 

as differences along developmental time (N = 8/18 (44%) parent-child comparisons) (P-value = 

1.00, Fisher’s exact test).  

Together, these results suggest that the mutational mechanisms that operate during development 

may vary across space and time. Although published data is limited, others have also detected 

variation in mutation spectra in fetal stem cells in humans(22) and during early embryogenesis 210 

and gametogenesis in mice(23).  
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We repeated these analyses using a simplified germ layer tree and observed similar results as the 

full developmental tissue tree (fig. S17), suggesting that the development tree definition does not 

substantially affect the results. 

The functional consequences of PZMs across the human lifespan 215 

The GTEx PZM atlas provides a unique opportunity to compare the quality and fitness 

consequences of mutations that arise at different stages of the human life cycle. First, we 

annotated the PZM atlas with CADD, a widely used machine learning classifier of genetic 

variation(24). The CADD score of a genetic variant is a quantitative prediction of 

deleteriousness, measured on an evolutionary timescale. We performed a series of systematic 220 

comparisons of PZM CADD scores to identify differences across mutation VAF, developmental 

time, developmental location, and tissue type.  

Strikingly, when comparing prenatal and postnatal PZMs, we found a major effect of VAF on 

the distribution of CADD scores (Fig. 3A and fig. S18A). For prenatal PZMs, low VAF PZMs 

were much more deleterious than high VAF PZMs (odds ratio = 1.9, P-value = 2.6E-7, Fisher’s 225 

exact test), while no such difference was observed for postnatal PZMs (P-value-value = 0.24, 

Wald Test). Furthermore, we found that for low VAF PZMs, deleteriousness decreased over time 

(odds ratio = 0.58, P-value = 1.4E-9) but remained constant for high VAF PZMs (P-value = 

0.15). This result suggests that mutations that appear deleterious on an evolutionary timescale 

may be benign or even beneficial to a growing fetus so long as the mutation remains in a small 230 

fraction of cells.  
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Fig. 3. Deleteriousness and selective pressure changes as a function of VAF, space, time, and 
classes of genetic variation. (A) Relative odds of detecting deleterious mutations across 235 
developmental time (gray bars) and VAF bins (green bars). (B) Histogram of the odds of 
detecting deleterious postnatal PZMs in each tissue compared to the average tissue. Tissues are 
colored using the GTEx coloring convention (see table S8 for a complete legend). Tissues with 
significant odds ratios (at q-value ≤ 0.05) are marked with “*” and labeled with their name. 
Vertical dashed line at odds ratio = 1 indicates no difference in odds. (C) Relative odds of 240 
detecting deleterious PZM mutations compared to different classes of genetic variation. Lines at 
odds ratio = 1 indicates no difference in odds of detecting deleterious mutations compared to 
reference group. Error bars represent 95% CIs. (D) Comparison of postnatal PZM selection 
pressure in cancer and non-cancer genes. For clarity, only PZM datasets that had different 
selection pressure between cancer and non-cancer genes are shown. Left: PZM datasets that had 245 
variable selection when using all mutations; middle: high VAF mutations; right: low VAF 
mutations. (E) dN/dS values for classes of genetic variation, as in (C). CIs are plotted behind 
each datapoint and are sometimes smaller than the datapoint size. (F) Model for the association 
between variant frequency and deleteriousness and selection pressure. The data suggests negative 
correlations between mutation frequency in a population and deleteriousness and selection. 250 
Variation in deleteriousness and selection may be driven by differential forces that act on cells, 
individuals, and populations. dN/dS = 1 indicates neutral expectation. AF = allele frequency. 
BRCA = breast invasive carcinoma. GBM = glioblastoma multiforme. LIHC = liver 
hepatocellular carcinoma. PAAD = pancreatic adenocarcinoma. SKCM = skin cutaneous 
melanoma. 255 

Next, we asked if deleteriousness varied across the adult human body by comparing postnatal 

PZMs in each adult tissue. PZM deleteriousness was similar across tissues; however, there were 

a few exceptions (Fig. 3B). PZMs in 6/48 (13%) tissues were significantly less deleterious than 

the average tissue and 3/48 (6%) tissues were more deleterious. When analyzed together, the 

PZMs from all brain regions were also more deleterious than average (P-value = 0.02, Fisher’s 260 

exact test). Interestingly, the tissues that were enriched for deleterious mutations were tissues 

composed of a large fraction of postmitotic cells (odds ratio CI: [1.5, ∞), P-value = 0.01, Fisher's 

exact test). In contrast, tissues that rely on renewal from differentiated cells were depleted of 

deleterious mutations(25). This data suggests that the maintenance of genome integrity in a tissue 

may be coupled with its tissue homeostasis strategy and thus may provide a way for tissues to 265 

suppress tumor formation(26).  
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Finally, to provide context for our results, we compared the deleteriousness of GTEx PZMs to 

other classes of single-nucleotide genetic variation: 1) random mutations (simulated from two 

different models of neutral evolution), 2) standing germline variation (from gnomAD, a 

comprehensive database of germline genetic variation(27)), 3) inherited de novo mutations from 270 

cases and control probands (from denovo-db, a curated database of de novo mutations(28)) and 

4) somatic mutations observed in cancer (from TCGA, a comprehensive database of cancer 

somatic mutations)(29).  

Surprisingly, the low VAF prenatal PZMs were the most deleterious class of genetic variation 

investigated (Fig. 3C and fig. S18). Using the simulated neutral mutations as a reference, we 275 

found that postnatal PZMs, de novo mutations in cases, and somatic cancer mutations to be 

significantly enriched for deleterious mutation. De novo mutations in controls and high VAF 

prenatal PZMs were not statistically different from simulated neutral mutations. Inherited 

germline variants were significantly depleted of deleterious mutations, with the extent of 

depletion increasing with population frequency. These observations were recapitulated in 3 280 

validation datasets that used a variety of nucleic acid sources and variant calling methods 

(Supplementary result 2.8).  

Similar results were observed using alternative metrics for deleteriousness (SIFT(30) and 

PolyPhen(31)) (data not shown). 

The selective constraint on the transcribed exome varies throughout the human lifespan 285 

The deleteriousness results suggest that selection pressure may be different across classes of 

genetic variation. We investigated this hypothesis by estimating the selection pressure on PZMs 

and other classes of genetic variation using dN/dS, a normalized rate of nonsynonymous to 
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synonymous mutations(32). dN/dS values greater than one are interpreted as evidence for 

positive selection, while negative selection can lead to dN/dS values less than one. Using 290 

dNdScv, a method for the study of somatic evolution(11), we assessed dN/dS across VAF, 

developmental time, developmental location, and tissue type, and contextualized the results by 

comparing selection pressures on PZMs to other classes of genetic variation. 

To determine if differences in selective pressure may explain differences in CADD scores of 

prenatal and postnatal PZMs, we compared dN/dS for prenatal and postnatal PZMs as a function 295 

of VAF. For high VAF PZMs, prenatal and postnatal mutations both fit a model of neutral 

accumulation. However, for low VAF PZMs, the remarkable prenatal PZM class was under 

nominal positive selection (missense dN/dS = 1.25, P-value = 0.047) whereas postnatal PZMs 

were under nominal negative selection (missense dN/dS = 0.97, P-value = 0.045), suggesting 

selection pressure on low VAF PZMs may vary across the human lifespan. These results are 300 

consistent with the idea that high CADD score PZMs in early development may confer a survival 

advantage that is missing from or irrelevant to postnatal cells. 

We next determined if selection pressure of postnatal PZMs varied across adult tissues. For most 

tissues of the body, single-tissue dN/dS was not significantly different than 1, consistent with 

previous work(11). However, dN/dS was higher for high VAF PZMs compared to low VAF 305 

PZMs for all tissues en masse and for three tissues/cell types individually (whole blood, EBV-

transformed lymphocytes, and adrenal gland). Additionally, dN/dS estimates for high VAF 

postnatal PZMs were higher in cancer driver genes than non-cancer driver genes for all tissues en 

masse, sun-exposed skin and esophagus mucosa, tissues where the action of adaptive evolution 

has already been documented (7, 33) (Fig. 3D). These observations are consistent with the 310 
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expectation that positive selection on a mutation may result in clonal growth, and indeed, we 

detected mutations associated with clonal hematopoiesis of indeterminant potential in the blood 

of individuals without apparent hematological malignancies (fig. S23 and table S11). 

Selection pressure varies across different classes of genetic variation 

To contextualize the selection on PZMs, we compared PZM missense dN/dS estimates to other 315 

classes of genetic variation (Fig. 3E). Selection of mutations within an individual (in both 

normal and diseased states) was characterized by neutral to weak positive selection whereas 

selection on variants within a population was characterized by negative selection. Altogether, the 

deleteriousness and selection results suggest a stark dichotomy between growth within an 

individual versus growth within a population: the mutations that are selected for within an 320 

individual may be detrimental to the population (Fig. 3F). 

Characterization of germ cell PZMs 

Construction of a catalog of germ cell PZMs throughout the germ cell life cycle 

While a great deal is known about germline variation and de novo mutations, much less is known 

about the PZMs that seed these forms of inherited genetic variation. To better understand PZMs 325 

in germ cells, we characterized and contrasted the mutation burden, spectra, and deleteriousness 

of germ cell PZMs across the germ cell life cycle.  

Due to cell composition differences between male and female gonads, PZMs in testes samples 

could be confidently mapped to germ cells but PZMs in ovary samples could not 

(Supplementary result 2.10, fig. S24, and table S12). Therefore, only testicular germ cell 330 

PZMs were analyzed further. Germ cell PZMs were classified into “gonosomal” (present in 
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somatic and germ cells) and “germ cell-specific”. 571 germ cell PZMs were identified in bulk 

testis from 281 testis donors of which 12% were putative gonosomal PZMs and the remaining 

88% were putative germ cell-specific PZMs. 

Testicular germ cell PZMs represent the full reservoir of mutations that can be passed to 335 

progeny. We hypothesized that the selection pressures on spermatogenesis, fertilization, and 

prenatal development may alter the types of mutations that pass through each of these 

bottlenecks of life. To examine germ cell PZMs that passed the spermatogenesis bottleneck, we 

generated whole exome sequencing data on small 200-cell pools of ejaculated sperm and 

identified and validated 75 PZMs in the same genomic regions that we assessed in the GTEx 340 

RNA-seq samples (defined as the “allowable transcriptome”) (Methods section 1.10.2 and fig. 

S8). To examine germ cell PZMs that completed prenatal development, we used ~17,000 de 

novo mutations in the allowable transcriptome from denovo-db(28).  

The mutation spectra for each germ cell mutation dataset were statistically different from the 

others (Fig. 4A and table S13, Chi-square test). While C>T was the most common mutation type 345 

in all datasets, C>A was the most variable. Interestingly, hierarchical clustering of the spectra 

nested the classes in developmental order, indicating that bottlenecks may leave incremental 

changes to the mutation spectra (Fig. 4A inset). 
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Fig. 4. Germ cell PZM characteristics. (A) Mutation spectra of different germ cell mutation 350 
classesNumber of mutations used in each dataset is listed in the legend. Inset: Hierarchical 
clustering of germ cell mutation spectra. (B) Relative odds of detecting deleterious mutations 
across germ cell datasets compared to testis PZMs. Bars colored by dataset. Horizontal black line 
at odds ratio = 1 denotes no difference in odds. (C) Germ cell mutation rate varies during 
gametogenesis in males. (D) Majority of somatic tissues have a significantly higher odds of 355 
detecting a gonosomal PZM than blood. Natural log odds ratio for detecting a gonosomal PZM 
in each somatic tissue compared to blood. Dashed line at Y = 0 denotes no difference in odds. 
(E) Gonosomal PZM VAF in somatic tissue versus germ cell VAF. (F) Distribution of tissue-
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specific Pearson correlations of log10-transformed gonosomal PZM VAFs in each somatic tissue 
and testis. Significant correlations at q-value ≤ 0.05 marked with “*”. (G) Schematic of the 360 
difference in selective constraint between germline and somatic genetic variation partitioned into 
discrete stages of the life cycle. Error bars denote 95% CIs. 

Deleterious mutations are likely purged during the germ cell life cycle. 

Consistent with the action of purifying selection on male germ cells, we found that mutation 

deleteriousness decreased over the germ cell life cycle when comparing testicular germ cell 365 

PZMs and de novo mutations in controls (Fig. 4B). In contrast, de novo mutations from cases 

were just as likely to be deleterious as testis PZMs. To replicate these observations, we 

performed a similar analysis using only DNA-based measurements from published datasets 

(Supplementary result 2.10.3). Encouragingly, we found that both the fraction of coding 

mutations and the odds of detecting a deleterious mutation decreased over the germ cell life 370 

cycle in the independent datasets (fig. S25). Donor age was not associated with PZM 

deleteriousness in each dataset. 

The mutation rate during male gametogenesis is dynamic 

We estimated the mutation rate (i.e., number of mutations in the transcriptome per cell division) 

for each of three major stages during male gametogenesis (Methods section 1.11). Consistent 375 

with previous work(34), the observed mutation rate was higher in prenatal timepoints than the 

postnatal timepoint (Fig. 4C). The observed lower mutation rate during adulthood may be a 

strategy to limit the number of deleterious mutations that are passed to the next generation. 

Unlike (34) and other studies that use transmitted de novo mutations to measure mutation 

rates(35–38), these estimates reflect mutation rates in germ cells in the testis and thus offer 380 

insight on a novel perspective of germ cell mutagenesis. 
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Blood is a poor surrogate for measuring mosaicism of gonosomal PZMs 

Motivated by the fact that only a small subset of tissue types is easily and ethically accessible in 

antemortem human subjects research, we hypothesized that more accessible tissues may be 

useful surrogates for examining prenatal PZMs in less accessible tissues. The results of such 385 

analyses may shed light on the cellular dynamics of human development and implications for 

preconception genetic counseling and de novo mutation discovery. 

We fit a mixed-effects model to predict whether a gonosomal PZM was detected in a somatic 

tissue while controlling for technical effects. Surprisingly, 88% (38/43) of tissues had 

significantly higher odds of detecting gonosomal PZMs than in blood (Fig. 4D), suggesting that 390 

blood is a poor surrogate for detecting gonosomal PZMs. Additionally, 88% (38/43) of somatic 

tissues had a significant linear correlation between the somatic VAF and the germ cell VAF (Fig. 

4E and F; Pearson’s correlation test), suggesting that somatic tissues may offer a faithful 

representation of gonosomal PZMs in germ cells. These observations were not an artificial result 

of germline variant filtering or our cross-sample mutation calling strategy (Supplementary 395 

Result 2.10.4, fig. S26). 

Based on these results, for trio studies, we recommend sperm (a direct readout of germ cells) 

should be profiled in males and skin (which is predicted to be over 5× more likely than blood to 

contain a gonosomal PZM) should be profiled in females. 

Conclusion 400 

Here, we present one of the most comprehensive and diverse surveys of PZM variation in normal 

individuals, which should prove a valuable resource for understanding the causes and 

consequences of PZMs across the body. By linking these mutation calls to the vast data and 
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tissue resources of the GTEx project, there are a number of new analyses that could be 

attempted. First, our observations are consistent with a heritable component to PZM burden, 405 

which, if it exists, could be mapped using GWAS(39, 40). Second, the impact of PZMs on gene 

expression traits, both in cis and trans, can be directly assessed(10, 41). Third, the spatial and 

cell-type distribution of the mutations reported here could be mapped in banked tissue samples 

from the GTEx donors(7, 42), and the mutation type and burden of each sample associated with 

histology images collected by the GTEx project. We performed extensive validation of our PZM 410 

callset, and these validation data will be helpful in training new algorithms for PZM detection. 

We observed a number of striking features regarding the developmental origins of mutations that 

deserve follow-up. Most intriguing is a class of low VAF prenatal mutations that appear to have 

the highest fraction of deleterious mutation across the human lifespan, even considering disease 

states. This observation, based on a definition of deleteriousness on an evolutionary timescale, 415 

suggests that the functional consequences of mutation can have opposite fitness effects at 

different stages of the life cycle of genomes and in different cellular contexts. One well 

established example of dramatic differences in fitness effects between somatic and germline cells 

is the RAS-MAP pathway, in which gain-of-function mutations provide a transmission 

advantage to male germ cells, but are often reproductively lethal for the resulting conceptus(43, 420 

44). While some parallels have been noted between molecular mechanisms of carcinogenesis and 

normal embryogenesis(45, 46), there is essentially no data on the potential adaptive effects of 

PZMs on embryonic or fetal development in healthy individuals. 

We reported a large difference in dN/dS inferred from PZMs and inherited germline variants, 

consistent with strong purifying selection reducing the transmission of deleterious mutation 425 
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across generations (Figs. 3E and 4B). An important future direction is to dissect and quantify the 

physiological basis of this purifying selection (Fig. 4G). With careful thought and experimental 

design, it should be possible to model the steps of the human lifecycle where purifying selection 

can occur, estimate the strength of selection at each step, and translate this data into life stage-

specific measures of selective constraint for each gene in the genome. This would be of great 430 

benefit to human geneticists, who rely heavily on selective-constraint measures aggregated 

across the lifecycle (such as CADD) for interpretation of genetic variants in the context of 

disease(47, 48). Stage-specific constraint metrics could augment current methods for variant 

interpretation to be more relevant to the tissue and developmental time affected by a disease.  
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